Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(tert-butylisonitrile)hexacarbonyl- μ_3 -ethylidyne-*triangulo*-tricobalt(I)-(3 Co - Co)

Jolene M. Brown and Brian K. Nicholson*

Chemistry Department, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand

Correspondence e-mail: B.Nicholson@waikato.ac.nz

Received 10 September 2007; accepted 11 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.025; wR factor = 0.059; data-to-parameter ratio = 14.9.

The title molecule, $[Co_3(C_2H_3)(C_5H_9N)_3(CO)_6]$ or $[Co_3(\mu_3 - \mu_3)_3(CO)_6]$ CCH_3 (CN^tBu)₃(CO)₆], lies on a threefold rotation axis. The three isonitrile ligands each occupy an equatorial site on each of the three Co atoms. The average Co-Co bond length is 2.4769 (6) Å. The tert-butyl groups are disordered over two orientations, with site occupancies of ca 0.6:0.4.

Related literature

For details of the synthesis, see Newman & Manning (1974). For the structure of the parent nonacarbonyl cluster, see Sutton & Dahl (1967). Other examples of equatorially trisubstituted derivatives of $[Co_3(\mu_3-CR)(CO)_9]$ include the (MeO)₃P derivative (Dawson et al., 1979). Axial substitution appears to be favoured only by very bulky or chelating ligands (D'Agostino et al., 1991; Renouard et al., 1996).

Experimental

Crystal data

[Co₃(C₂H₃)(C₅H₉N)₃(CO)₆] $M_r = 621.29$ Trigonal, R3c a = 16.9804 (6) Å c = 17.4605 (11) ÅV = 4360.0 (4) Å³

Data collection

Siemens SMART CCD 10767 measured reflections diffractometer 1991 independent reflections Absorption correction: multi-scan 1757 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 2004) $R_{\rm int} = 0.036$ $T_{\min} = 0.672, T_{\max} = 0.830$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.059$	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
1991 reflections	Absolute structure: Flack (1983),
134 parameters	with 989 Friedel pairs
1 restraint	Flack parameter: 0.01 (2)

Z = 6

Mo $K\alpha$ radiation

 $0.54 \times 0.13 \times 0.11 \text{ mm}$

 $\mu = 1.73 \text{ mm}^-$

T = 293 (2) K

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

The authors thank Dr Jan Wikaira, University of Canterbury, New Zealand, for the collection of the X-ray intensity data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2355).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- D'Agostino, M. F., Frampton, L. S. & McGlinchey, M. J. (1991). Organometallics, 10, 1383-1390.
- Dawson, P. A., Robinson, B. H. & Simpson, J. (1979). J. Chem. Soc. Dalton Trans. pp. 1762-1768.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Newman, J. & Manning, A. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2549-2553
- Renouard, C., Rheinwald, G., Stoeckli-Evans, H., Süss-Fink, G., Braga, D. & Grepioni, F. (1996). J. Chem. Soc. Dalton Trans. pp. 1875-1883.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sutton, P. W. & Dahl, L. F. (1967). J. Am. Chem. Soc. 89, 261-268.

supplementary materials

Acta Cryst. (2007). E63, m2542 [doi:10.1107/S1600536807044261]

Tris(tert-butylisonitrile)hexacarbonyl-µ3-ethylidyne-triangulo-tricobalt(I)(3 Co-Co)

J. M. Brown and B. K. Nicholson

Comment

The title compound is the first structurally characterized isonitrile derivative of a $[Co_3(\mu_3-CR)(CO)_9]$ cluster. The three $CNBu^t$ ligands have displaced three equatorial CO ligands in the parent molecule, to give a molecule with C₃ symmetry. The substitution has had little effect on the parameters of the cluster core with average Co—Co and Co—C distances (2.4769 (6) and 1.908 (3) Å respectively) that do not differ significantly from those of parent (2.467 (7) and 1.90 (2) Å, (Sutton & Dahl, 1967) though the low precision of the earlier study would mask any small changes.

Experimental

The compound was prepared by thermal reaction between $[Co_3(\mu_3-CR)(CO)_9]$ and $CNBu^t$ (Newman & Manning, 1974). X-ray crystals were grown from pentane.

Refinement

The *tert*-butyl groups are disordered over two orientations which refined to a 0.64:0.36 occupancy ratio; this accounts for the large differences between the displacement parameters of the C4 carbon atom and the attached CH₃ carbon atoms. All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C).

Figures

Fig. 1. Structure of $[Co_3(\mu_3$ -CCH₃)(CO)₆(CNBu^t)₃] with diplacement parameters drawn at the 30% probability level. Only the major disorder component of the *t*-butyl group is shown.

Fig. 2. A view down the threefold axis. Only the major disorder component of the *t*-butyl group is shown.

tris(tert-butylisonitrile)hexacarbonyl-µ3-ethylidyne- triangulo-tricobalt(I)(3 Co-Co)

Crystal data

[Co ₃ (C ₂ H ₃)(C ₅ H ₉ N) ₃ (CO) ₆]	Z = 6
$M_r = 621.29$	$F_{000} = 1908$
Trigonal, R3c	$D_{\rm x} = 1.420 {\rm ~Mg~m}^{-3}$
Hall symbol: R 3 -2"c	Mo K α radiation $\lambda = 0.71073$ Å
a = 16.9804 (6) Å	Cell parameters from 5750 reflections
b = 16.9804 (6) Å	$\theta = 2.4 - 26.4^{\circ}$
c = 17.4605 (11) Å	$\mu = 1.73 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 293 (2) K
$\beta = 90^{\circ}$	Hexagonal rod, black
$\gamma = 120^{\circ}$	$0.54\times0.13\times0.11~mm$
$V = 4360.0 (4) \text{ Å}^3$	

Data collection

1991 independent reflections
1757 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.036$
$\theta_{\text{max}} = 26.4^{\circ}$
$\theta_{\min} = 2.4^{\circ}$
$h = -21 \rightarrow 20$
$k = -21 \rightarrow 21$
$l = -21 \rightarrow 21$

Refinement

Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0388P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\text{max}} = 0.002$
$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Extinction correction: none
Absolute structure: Flack (1983), with 989 Friedel pairs
Flack parameter: 0.01 (2)

Secondary atom site location: difference Fourier map

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Col	0.92643 (2)	0.01828 (2)	0.164850 (14)	0.04289 (10)	
N1	0.91952 (19)	0.17320 (19)	0.24181 (17)	0.0676 (7)	
C1	1.0000	0.0000	0.2372 (3)	0.0441 (9)	
C2	1.0000	0.0000	0.3218 (3)	0.0698 (14)	
H2A	1.0116	0.0581	0.3401	0.105*	0.333
H2B	1.0466	-0.0116	0.3401	0.105*	0.333
H2C	0.9419	-0.0466	0.3401	0.105*	0.333
C3	0.92327 (19)	0.1150 (2)	0.21234 (18)	0.0557 (7)	
C4	0.9179 (2)	0.2509 (2)	0.27631 (19)	0.0684 (9)	
C11	0.9168 (2)	0.0388 (2)	0.06419 (19)	0.0593 (7)	
O11	0.9109 (2)	0.0514 (2)	0.00155 (15)	0.0992 (9)	
C12	0.8144 (2)	-0.0659 (2)	0.18837 (19)	0.0618 (8)	
O12	0.74179 (17)	-0.1194 (2)	0.2037 (2)	0.1022 (10)	
C5	0.9649 (10)	0.3290 (5)	0.2265 (6)	0.120 (5)	0.640 (16)
H51	0.9328	0.3171	0.1788	0.180*	0.640 (16)
H52	1.0255	0.3405	0.2172	0.180*	0.640 (16)
H53	0.9676	0.3812	0.2506	0.180*	0.640 (16)
C6	0.9631 (13)	0.2680 (9)	0.3533 (7)	0.166 (8)	0.640 (16)
H61	0.9298	0.2155	0.3853	0.249*	0.640 (16)
H62	0.9643	0.3197	0.3768	0.249*	0.640 (16)
H63	1.0243	0.2797	0.3470	0.249*	0.640 (16)
C7	0.8180 (6)	0.2243 (6)	0.2791 (9)	0.135 (6)	0.640 (16)
H71	0.7858	0.1729	0.3124	0.202*	0.640 (16)
H72	0.7926	0.2086	0.2285	0.202*	0.640 (16)
H73	0.8126	0.2745	0.2980	0.202*	0.640 (16)
C5A	1.0165 (10)	0.3310 (10)	0.2776 (15)	0.126 (10)	0.360 (16)
H51A	1.0400	0.3441	0.2263	0.188*	0.360 (16)
H52A	1.0533	0.3150	0.3083	0.188*	0.360 (16)
H53A	1.0176	0.3836	0.2989	0.188*	0.360 (16)
C6A	0.8664 (11)	0.2787 (10)	0.2206 (10)	0.100 (7)	0.360 (16)
H61A	0.8968	0.2940	0.1719	0.150*	0.360 (16)
H62A	0.8646	0.3304	0.2407	0.150*	0.360 (16)
H63A	0.8054	0.2290	0.2142	0.150*	0.360 (16)
C7A	0.875 (2)	0.2261 (16)	0.3488 (9)	0.154 (13)	0.360 (16)
H71A	0.9097	0.2094	0.3820	0.231*	0.360 (16)
H72A	0.8149	0.1754	0.3432	0.231*	0.360 (16)
H73A	0.8727	0.2766	0.3706	0.231*	0.360 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.03864 (19)	0.04002 (19)	0.05232 (16)	0.02140 (15)	-0.00286 (15)	-0.00329 (17)
N1	0.0639 (16)	0.0525 (15)	0.0928 (18)	0.0338 (14)	-0.0040 (15)	-0.0173 (14)
C1	0.0416 (13)	0.0416 (13)	0.049 (2)	0.0208 (7)	0.000	0.000

supplementary materials

C2	0.077 (2)	0.077 (2)	0.055 (3)	0.0386 (11)	0.000	0.000
C3	0.0456 (15)	0.0494 (16)	0.0751 (18)	0.0259 (14)	-0.0041 (13)	-0.0059 (14)
C4	0.078 (2)	0.0545 (18)	0.081 (2)	0.0398 (18)	-0.0010 (18)	-0.0181 (16)
C11	0.0538 (18)	0.0548 (17)	0.067 (2)	0.0257 (14)	-0.0064 (14)	0.0037 (14)
011	0.105 (2)	0.111 (2)	0.0676 (16)	0.0438 (19)	-0.0143 (14)	0.0177 (15)
C12	0.0504 (19)	0.0576 (18)	0.083 (2)	0.0312 (16)	0.0002 (15)	0.0059 (14)
O12	0.0457 (14)	0.0793 (18)	0.171 (3)	0.0234 (13)	0.0190 (16)	0.0303 (18)
C5	0.169 (15)	0.064 (5)	0.121 (6)	0.054 (7)	0.021 (7)	0.002 (4)
C6	0.29 (2)	0.143 (12)	0.095 (7)	0.132 (15)	-0.076 (12)	-0.049 (8)
C7	0.096 (6)	0.085 (6)	0.237 (18)	0.056 (5)	0.031 (7)	-0.024 (8)
C5A	0.087 (9)	0.075 (9)	0.21 (3)	0.038 (7)	-0.026 (10)	-0.075 (13)
C6A	0.104 (14)	0.079 (11)	0.141 (12)	0.063 (12)	-0.024 (10)	-0.024 (9)
C7A	0.31 (4)	0.132 (16)	0.074 (13)	0.15 (2)	0.067 (19)	0.015 (11)

Geometric parameters (Å, °)

Co1—C12	1.764 (3)	C5—H51	0.9600
Co1—C11	1.815 (3)	С5—Н52	0.9600
Co1—C3	1.865 (3)	С5—Н53	0.9600
Co1—C1	1.908 (3)	C6—H61	0.9600
Co1—Co1 ⁱ	2.4769 (6)	С6—Н62	0.9600
N1—C3	1.143 (4)	С6—Н63	0.9600
N1C4	1.464 (4)	C7—H71	0.9600
C1—C2	1.477 (8)	С7—Н72	0.9600
C2—H2A	0.9600	С7—Н73	0.9600
C2—H2B	0.9600	C5A—H51A	0.9600
C2—H2C	0.9600	C5A—H52A	0.9600
C4—C7A	1.413 (16)	С5А—Н53А	0.9600
C4—C5	1.446 (8)	C6A—H61A	0.9600
C4—C6	1.503 (10)	С6А—Н62А	0.9600
C4—C7	1.522 (9)	С6А—Н63А	0.9600
C4—C6A	1.532 (14)	C7A—H71A	0.9600
C4—C5A	1.541 (14)	С7А—Н72А	0.9600
C11—O11	1.129 (4)	С7А—Н73А	0.9600
C12—O12	1.139 (4)		
C12—Co1—C11	102.54 (15)	O12—C12—Co1	179.1 (3)
C12—Co1—C3	96.66 (13)	C4—C5—H51	109.5
C11—Co1—C3	102.54 (14)	C4—C5—H52	109.5
C12—Co1—C1	104.04 (11)	H51—C5—H52	109.5
C11—Co1—C1	143.23 (15)	C4—C5—H53	109.5
C3—Co1—C1	99.12 (12)	H51—C5—H53	109.5
C12—Co1—Co1 ⁱ	150.03 (10)	H52—C5—H53	109.5
C11—Co1—Co1 ⁱ	96.93 (10)	С4—С6—Н61	109.5
C3—Co1—Co1 ⁱ	101.12 (9)	С4—С6—Н62	109.5
C1—Co1—Co1 ⁱ	49.53 (8)	Н61—С6—Н62	109.5
C12—Co1—Co1 ⁱⁱ	92.89 (10)	С4—С6—Н63	109.5
C11—Co1—Co1 ⁱⁱ	104.41 (11)	H61—C6—H63	109.5

C3—Co1—Co1 ⁱⁱ	148.64 (9)	H62—C6—H63	109.5
Co1 ⁱ —Co1—Co1 ⁱⁱ	60.0	C4—C7—H71	109.5
C3—N1—C4	176.9 (4)	C4—C7—H72	109.5
C2C1Co1	131.45 (10)	Н71—С7—Н72	109.5
Co1 ⁱⁱ —C1—Co1	80.95 (16)	С4—С7—Н73	109.5
C1—C2—H2A	109.5	Н71—С7—Н73	109.5
C1—C2—H2B	109.5	Н72—С7—Н73	109.5
H2A—C2—H2B	109.5	C4—C5A—H51A	109.5
C1—C2—H2C	109.5	C4—C5A—H52A	109.5
H2A—C2—H2C	109.5	H51A—C5A—H52A	109.5
H2B—C2—H2C	109.5	С4—С5А—Н53А	109.5
N1—C3—Co1	178.6 (3)	H51A—C5A—H53A	109.5
C7A—C4—N1	109.7 (8)	H52A—C5A—H53A	109.5
C5-C4-N1	109.2 (4)	C4—C6A—H61A	109.5
C5—C4—C6	111.5 (7)	C4—C6A—H62A	109.5
N1—C4—C6	107.7 (6)	H61A—C6A—H62A	109.5
C5—C4—C7	108.3 (8)	С4—С6А—Н63А	109.5
N1—C4—C7	105.4 (4)	H61A—C6A—H63A	109.5
C6—C4—C7	114.5 (9)	H62A—C6A—H63A	109.5
C7A—C4—C6A	112.1 (14)	C4—C7A—H71A	109.5
N1—C4—C6A	106.7 (5)	C4—C7A—H72A	109.5
C7A—C4—C5A	114.7 (15)	H71A—C7A—H72A	109.5
N1—C4—C5A	107.4 (5)	С4—С7А—Н73А	109.5
C6A—C4—C5A	105.9 (11)	H71A—C7A—H73A	109.5
O11—C11—Co1	179.9 (4)	H72A—C7A—H73A	109.5

Symmetry codes: (i) -*x*+*y*+2, -*x*+1, *z*; (ii) -*y*+1, *x*-*y*-1, *z*.

